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A key to an analyses of nuclear multifragmentation data
leading to the nuclear matter phase diagram [1] was Fisher’s
droplet model [2]. At coexistence Fisher’s model gives the
temperature T cluster yields as

ns(T ) µ g(s)exp(−ws/T ) (1)

where s is the cluster’s surface area, g(s) is proportional to the
cluster’s degeneracy, w is the surface tension.

Based on the combinatorics of two dimensional clusters
Fisher suggested g(s) would be given by

g(s) µ s−x exp(vs) (2)

where x is set by the Euclidian dimension and v is the surface
entropy tension. Figure. 1 shows Eq. (2) describes a direct
counting of these cluster combinatorics [3].
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FIG. 1: Degeneracy factor for polygons on the square lattice.

Inserting Eq. (2) into Eq. (1) yields

ns(T ) µ s−x exp [−s(w−Tv)/T ] (3)

The exponential’s argument is the free energy DG. At the
critical temperature Tc DG = 0 and Tc = w/v. For the two
dimensional Ising model (isomorphous with the lattice gas)
w = 2 and with the Fig. 1 parameters T c = 2.06, within 10%
of Onsager’s value Tc = 2.26915 . . . [5].

To make a better estimate of Tc we think of an initial con-
figuration of a liquid drop with A0 constituents and surface s0
and a final state of a cluster of A constituents and surface s
and its complement: a liquid drop of A0 −A constituents and
surface sc. This assumes stochastic cluster formation and is
supported by the Ising cluster’s Poissonian nature [4]. Now

DG = DE −TDS + pDV
= e0 [A +(A0 −A)−A0]+ w(s+ sc− s0)

− T [(lng(s)+ lng(sc)− lng(s0)]+ pDV (4)

where e0 is the volume energy coefficient, p is the pressure
and DV is the volume change. All terms µ A cancel. In the
large liquid drop limit sc ≈ s0 and lng(sc) ≈ lng(s0) leaving
only the cluster’s contribution to the DG. The volume change
for the lattice gas is

DV = [A +(A0 −A)−A0]+ l(s+ sc − s0) (5)

where l is the interaction range between two constituents, one
spacing on a lattice: l = 1. In in the large drop limit the first
part of Eq. (5) cancels and the second part depends only on
the cluster’s surface so Eq. (1) becomes

ns(T ) µ g(s)exp(−ws/T )exp(2pls/T )

µ s−x exp [−s(w+ 2pl−Tv)/T ] . (6)

The factor of two arises from moving the cluster from the liq-
uid to the vapor. The free energy vanishes at the critical point
so Tc = (w+2pcl)/v with pc ≈ 0.11 [6] Tc = 2.29, within 1%
of the Onsager value.
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FIG. 2: Ising cluster yields compared to Eq. (1) and (6).

Equation (6) also provides a better description of Ising
cluster yields than Eq. (1). Figure 2 shows the Ising yields
(nA(T ) = ås nA,s(T )) of a two dimensional square lattice of
side L = 80 and the predictions of Eq. (6) and (1) with no fit
parameters.
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